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Abstract The primary objective of this investigation was
to quantitatively identify which training variables result in
the greatest strength and hypertrophy outcomes with lower
body low intensity training with blood flow restriction (LI-
BFR). Searches were performed for published studies with
certain criteria. First, the primary focus of the study must
have compared the effects of low intensity endurance or
resistance training alone to low intensity exercise with
some form of blood flow restriction. Second, subject pop-
ulations had to have similar baseline characteristics so that
valid outcome measures could be made. Finally, outcome
measures had to include at least one measure of muscle
hypertrophy. All studies included in the analysis utilized
MRI except for two which reported changes via ultrasound.
The mean overall effect size (ES) for muscle strength for
LI-BFR was 0.58 [95% CI: 0.40, 0.76], and 0.00 [95% CI:
—0.18, 0.17] for low intensity training. The mean overall
ES for muscle hypertrophy for LI-BFR training was 0.39
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[95% CI: 0.35, 0.43], and —0.01 [95% CI: —0.05, 0.03] for
low intensity training. Blood flow restriction resulted in
significantly greater gains in strength and hypertrophy
when performed with resistance training than with walking.
In addition, performing LI-BFR 2-3 days per week resul-
ted in the greatest ES compared to 4-5 days per week.
Significant correlations were found between ES for
strength development and weeks of duration, but not for
muscle hypertrophy. This meta-analysis provides insight
into the impact of different variables on muscular strength
and hypertrophy to LI-BFR training.

Keywords KAATSU - Hypertrophy - Strength -
Vascular occlusion training

Introduction

The American College of Sports Medicine (ACSM) rec-
ommends lifting a weight of at least 70% 1RM to achieve
muscular hypertrophy as it is believed that anything below
this intensity rarely produces substantial muscle growth
(ACSM 2009). However, numerous studies using low
intensity exercise combined with blood flow restriction
(LI-BFR) have shown muscle hypertrophy to occur with a
training intensity as low as 20% IRM (Abe et al. 2005b, c;
Madarame et al. 2008; Yasuda et al. 2010). In further
support of LI-BFR, a recent review looking at potential
safety issues of this type of training concluded that it
offered no greater risk than traditional exercise (Loenneke
et al. 2011). LI-BFR has been combined with several dif-
ferent types of exercise (e.g. knee extension, knee flexion,
leg press, cycling, walking, elbow flexion, bench press) and
most have observed significant increases in muscle
hypertrophy (Abe et al. 2006, 2010a, b; Madarame et al.
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2008; Takarada et al. 2000; Yasuda et al. 2010), strength
(Abe et al. 2006, 2010a, b; Madarame et al. 2008; Takarada
et al. 2000; Yasuda et al. 2010), and endurance (Kacin and
Strazar 2011). Interestingly, although increases in skeletal
muscle hypertrophy and strength do not typically occur
from an “Aerobic” mode of exercise, increased size and
strength have been observed from both slow walk training
(Abe et al. 2006) and cycling combined with LI-BFR (Abe
et al. 2010a). Previous literature has discussed the benefits
and mechanisms of blood flow restricted training in depth
[for reviews please see (Loenneke and Pujol 2009;
Loenneke et al. 2010; Manini and Clark 2009; Wernbom
et al. 2008; Loenneke and Pujol 2011)].

Published studies hypothesize that blood flow restriction
training induces skeletal muscle hypertrophy through a
variety of mechanisms [for a review please see (Loenneke
et al. 2010)], however, a definitive mechanism has yet to be
elucidated. Proposed mechanisms include increased fiber
type recruitment, metabolic accumulation, stimulation of
muscle protein synthesis, and cell swelling, although it is
likely that many of the aforementioned mechanims work
together.

Throughout the LI-BFR literature there exist many
significant differences in study design, specifically with
respect to different training variables (e.g. mode of exer-
cise, days per week, duration, rest intervals, exercise
intensity, exercise volume). Little work has been com-
pleted to identify which variables are the most important to
consider when designing an optimal LI-BFR training pro-
gram. A robust and quantitative approach to the problem
can be provided in the form of a meta-analysis of the data.
The primary objective of this investigation was to quanti-
tatively identify which training variables result in the
greatest strength and muscle hypertrophy outcomes when
combining low intensity exercise with blood flow
restriction.

Methods
Literature search

Searches were performed for published studies with a
number of criteria. First, the primary focus of the study
must have compared the effects of low intensity endurance
or resistance training alone to low intensity exercise with
some form of blood flow restriction. Second, to be con-
sidered for our analysis, subject populations had to have
similar baseline characteristics (e.g. both untrained and
trained) so that valid outcome measures could be made.
Finally, the outcome measures had to include at least one
measure of muscle hypertrophy as this is currently sug-
gested to be a primary mechanism responsible for all
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outcome measures of functionality (Loenneke et al. 2010).
Studies reporting muscle hypertrophy as a percentage
increase were excluded due to the inability to calculate an
effect size. All studies included in the analysis utilized
MRI except for two which reported changes in hypertrophy
via ultrasound. In addition, due to the paucity of data on LI-
BFR of the upper body, only studies investigating the lower
body were included. Electronic databases searched inclu-
ded Science Citation Index, National Library of Medicine,
Sport Discus, Google Scholar, and MEDLINE were sear-
ched in February 2011 back to the earliest available time
that met the specifications of this meta-analysis when Abe
et al. (2005c) published a foundational study on blood flow
restriction training.

Exclusion of studies with irrelevant content and doublets
was carried out in three steps. First, the titles of the articles
were read, followed by reading of the abstracts, and finally
the entire article was read. The reference lists of relevant
articles were, in turn, scanned for additional articles
(published or unpublished) that met the inclusion criteria.
Conference abstracts and proceedings were excluded.
Relevant studies were selected and searched for data nec-
essary to compute effect size and descriptive information
regarding the training protocol. Table 1 is composed of all
studies meeting our meta-analysis requirements and
Table 2 lists the studies excluded from analysis.

Coding of studies

Each study was read and coded by the primary investigator
for descriptive information including gender and training
experience. For both endurance and resistance training, we
coded for frequency, mean training intensity, volume
(duration of endurance and sets of strength training), and
type of training split utilized. For training, frequency was
coded by the number of days per week that participants
trained their lower bodies. Pressure of the cuff was coded
through a range dependent upon the initial and final pres-
sure of each study. Volume for resistance and endurance
training, respectively, was coded as number of repetitions
performed, and average duration of the endurance training
session. Because the range of repetitions was not large
enough to compare within modes we compared total vol-
ume of work between all modalities. Training status was
defined as untrained, recreationally active, trained, and
athlete. Participants must have been performing a struc-
tured resistance-training program for at least 1 year prior to
the study’s onset in order to be considered as trained. In
order to be considered for the athlete category, participants
must have been competitive athletes at the collegiate or
professional level. As described previously by Rhea et al.
(2003) all studies included in the analysis were coded twice
by the primary investigator to minimize coder drift.
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Table 3 Effect size for muscle strength

Overall LI-BFR Low intensity
Mean (95% CI) N =28 P Mean (95% CI) N=20 P
0.58* (0.40, 0.76) —0.00 (—0.18, 0.17)
Moderators

Gender
Male 0.58 (0.29, 0.97) 19 >0.05 0.08 (—0.03, 0.20) 11 <0.05
Female LD. LD.
Both 0.58 (0.16, 1.01) 9 —0.20 (—-0.37, —0.02) 9

Training status
Untrained 1.38 (1.01, 1.76) 6 <0.05 0.32 (0.13, 0.51) 6 <0.05
Recreationally active 0.37 (0.17, 0.57) 21 —0.10 (=0.20, —0.00) 21
Athletes LD. LD.

Days per week
2-3 1.25 (0.84, 1.67) 6 <0.05 0.27 (0.07, 0.47) 6 <0.05
4-5 0.53 (0.21, 0.86) 10 —0.17 (-0.32, —0.14) 10
6—7 0.29 (—0.00, 0.58) 12 —0.00 (—0.15, 0.13) 12

Week of duration
<4 0.27 (0.03, 0.52) 13 <0.05 0.00 (—0.03, 0.04) 19 >0.05
5-8 0.49 (0.20, 0.79) 9 —0.05 (—0.11, 0.15) 7
9-10 1.38 (1.02, 1.75) 6 I.D.

Exercise mode
Isotonic 1.08 (0.69, 1.46) 8 <0.05 0.28 (0.11, 0.44) 8 <0.05
Walking 0.42 (0.16, 0.67) 18 —0.12 (—0.23, —0.02) 18
Cycling LD. 0.28 (0.11, 0.44)

Exercise intensity
15-30% MVC/IRM 1.08 (0.69, 1.46) 8 <0.05 0.28 (0.12, 0.44) 8% <0.05
50-60 (m/min) 0.25 (—0.10, 0.61) 9 —0.05 (—0.20, 0.09) 9
40-45% HRR/VOyax 0.50 (0.17, 0.83) 11 —0.17 (—-0.30, —0.03) 11*

Repetitions
60-70 1.37 (0.98, 1.76) 6 <0.05 0.32 (0.13, 0.51) 6 <0.05
Failure LD. LD.
14-20 (min) 0.39 (0.17, 0.60) 20 —0.11 (-=0.22, —0.01) 20

Rest period (s)
0 0.50 (0.19, 0.80) 11 <0.05 —0.17 (-0.30, —0.03) 11 <0.05
30 1.22 (0.83, 1.60) 7 0.30 (0.13, 0.47) 7
60 0.25 (—0.08, 0.58) —0.05 (—0.20, 0.09)
120 LD. I.D.

Cuff pressure (mmHg)
140-220 0.50 (0.12, 0.88) 11 >0.05
160-240 0.67 (0.35, 0.99) 16
230 LD.

Overall ES and moderating variables for muscular strength. 1.D. insufficient data (<5 ESs)

* Significant difference from low intensity training (P < 0.05)

0.58; n = 12] (P < 0.05), respectively (Table 3). Signifi-
cant differences were found between <4 and 10 weeks of
duration, 0.27 [95% CI: 0.03, 0.52; n = 13] versus 1.38
[95% CI. 1.02, 1.75; n = 6] (P <0.05), respectively
(Table 3). The isotonic exercise mode improved more

muscle strength than walking exercise mode, 1.08 [95%
CI: 0.69, 1.46; n = 8] versus 0.42 [95% CI: 0.16, 0.67;
n = 18) (P < 0.05), respectively (Table 3). Significant
differences were found between exercise intensity 15-30%
MVC/1RM and 50-60 m/min, 1.08 [95% CI: 0.69, 1.46;
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Table 4 Effect size for muscle hypertrophy

Overall LI-BFR Low Intensity
Mean (95% CI) N =31 P Mean (95% CI) N =29 P
0.39* (0.35, 0.43) —0.01 (—0.05, 0.03)
Moderators

Gender
Male 0.42 (0.37, 0.47) 25 <0.05 0.00 (—0.02, 0.03) 25
Female LD. LD.
Both 0.26 (0.16, 0.37) 6 I.D.

Days per week
2-3 0.48 (0.38, 0.58) 6 <0.05 —0.00 (—0.07, 0.06) 6 >0.05
4-5 0.27 (0.18, 0.37) 7 I.D.
6-7 0.41 (0.35, 0.47) 18 —0.00 (—0.04, 0.04) 18

Week of duration
<4 0.41 (0.34, 0.47) 19 >0.05 0.00 (—0.03, 0.04) 19 >0.05
5-8 0.39 (0.29, 0.49) 9 —0.05 (—0.11, 0.01)
9-10 1.D. I.D.

Exercise mode
Isotonic 1.08 (0.69, 1.46) 8 <0.05 0.02 (—0.02, 0.06) 13 >0.05
Walking 0.42 (0.16, 0.67) 18 —0.05 (—0.10, —0.05) 12
Cycling LD. ID.

Exercise intensity
15-30% MVC/IRM 1.08 (0.69, 1.46) <0.05 0.02 (—0.02, 0.069 13 >0.05
50-60 (m/min) 0.25 (—0.10, 0.61) —0.02 (—0.08, 0.03) 8
40-45% HRR/VOypax 0.50 (0.17, 0.83) 11 —0.05 (—0.11, 0.00) 8

Lower strength assessment
Isokinetic 1.D. >0.05 I.D. >0.05
Isotonic 0.33 (0.26, 0.41) —0.03 (-0,10, 0.03)
Isometric 0.37 (0.30, 0.44) 0.00 (—0.06, 0.07)

Repetitions
60-70 1.D. <0.05 I.D. >0.05
Failure LD. LD.
14-20 (min) 0.36 (0.30, 0.42) 18 —0.03 (—0.07, 0.00) 16
45 (rep) 0.51 (0.43, 0.60) 8 0.03 (—0.01, 0.09) 8

Rest period (s)
0 0.37 (0.28, 0.46) 10 >0.05 —0.05 (—0.10, 0.00) 8 >0.05
30 0.44 (0.36, 0.53) 12 0.00 (—0.03, 0.05) 12
60 0.35 (0.25, 0.45) 8 —0.02 (—0.08, 0.03) 8
120 1.D. I.D.

Cuff pressure (mmHg)
140-220 0.37 (0.28, 0.46) 10 >0.05
160-240 0.41 (0.34, 0.44) 20
230 1.D.

Overall ES and moderating variables for muscular hypertrophy. I.D. insufficient data (<5 ESs)

* Significant difference from low intensity training (P < 0.05)

n=28] versus 042 [95% CI. —-0.10, 0.61;
(P < 0.05), respectively (Table 3). The total volume of
work done in a workout, of about 60-70 repetitions
improved more muscle strength than 14-20 min of
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n=29]

walking, 1.37 [95% CI: 0.98, 1.76; n = 6] versus 0.39
[95% CI: 0.17, 0.60; n = 20) (P < 0.05), respectively
(Table 3). Significant differences were found between O s
rest periods and 30 s rest periods, 0.50 [95% CI: 0.19, 0.80;
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n=11] versus 122 [95% CI. 0.83, 1.60; n=7]
(P < 0.05), respectively, as well as between 30 and 60 s
rest periods, 1.22 [95% CI: 0.83, 1.60; n = 7] versus 0.25
[95% CI: —0.08, 0.58; n = 9] (Table 3). Correlational
analysis identified significant relationships (P < 0.01)
between ESfor strength development and weeks of training
duration (r = 0.67).

Muscular hypertrophy

The mean overall ES for muscle hypertrophy for LI-BFR
training was 0.39 [95% CI: 0.35, 0.43], and —0.01 [95%
CI: —0.05, 0.03] for low intensity training (Table 4). Sig-
nificant differences were found between occlusion training
and low intensity training (P < 0.05).

Moderating variables for LI-BFR training

An analysis of the differences in hypertrophy gains
achieved for blood flow restriction training was performed
in males as compared to combined gender groups to
determine whether gender influenced hypertrophy gains.
The male group gained more hypertrophy than the com-
bined group, 0.42 [95% CI: 0.37, 0.47; n = 25] versus 0.26
[95% CI. 0.16, 0.37; n=6] (P <0.05), respectively
(Table 4). Significant differences were found between
2-3 days per week and 4-5 days per week, 0.48 [95% CI:
0.38, 0.58; n = 6] versus 0.27 [95% CI: 0.18, 0.37; n = 7],
respectively (P < 0.05). The isotonic exercise mode
improved more muscle hypertrophy than the walking
exercise mode, 0.44 [95% CI: 0.34, 0.47; n = 13] versus
0.31 [95% CI: 0.25, 0.38; n = 14) (P < 0.05), respectively
(Table 4). Significant differences were found between
exercise intensity 15-30% MVC/IRM and 50-60 m/min
walking speed, 1.08 [95% CI: 0.69, 1.46; n = 8] versus
0.25 [95% CI: —0.10, 0.61; n = 9]. The total volume of
work done in a workout with 45 repetitions improved more
muscle hypertrophy than 14-20 min of walking, 0.51 [95%
CI: 0.43, 0.60; n = 8] versus 0.36 [95% CI: 0.30, 0.42;
n = 18] (P < 0.05), respectively (Table 4).

No significant relationships were found (P > 0.05)
between ES for hypertrophy and weeks of duration.

Discussion

The findings of this meta-analysis confirm previous ACSM
recommendations that regular low intensity resistance
training (not to muscular failure) does not provide an
adequate stimulus to produce substantial increases in
strength or muscle hypertrophy. However, when that same
low intensity exercise is combined with blood flow
restriction, significant increases are found comparable to a

previous meta-analysis using higher intensities (HIT)
(Krieger 2010) with both strength (LI-BFR 0.58 vs. HIT
0.80) and muscle hypertrophy (LI-BFR 0.39 vs. HIT 0.35).
To our knowledge, this is the first meta-analysis completed
on this novel mode of training, which shows the overall
effect from manipulating different variables for training
adaptation.

Subject characteristics

Subjects who were previously untrained have greater
increases in muscular strength than those who were
recreationally active. This may also provide some expla-
nation for the lower effect size observed with strength in
the LI-BFR cohort compared to a previous meta-analysis
on HIT resistance training which was composed almost
exclusively of untrained subjects. No such comparison
could be made for hypertrophy as a result of insufficient
data from available studies. No studies meeting our criteria
have been completed investigating LI-BFR using only
females, thus for this analysis males were compared to a
combined group made up of both males and females (males
vs. males/females). The combined group observed signifi-
cantly less muscle hypertrophy than the male only group,
possibly due to a buffering effect of females. This would be
consistent with previous research demonstrating that
women experience smaller changes in muscle size com-
pared with men (Ivey et al. 2000). A comparison across age
groups could not be made due to insufficient data from the
studies included in this analysis.

Training frequency

The analysis found that strength and muscle hypertrophy
were both significantly greater in the groups performing
exercise 2—-3 days per week compared to those exercising
4-5 days per week. It is possible that the gains were
attenuated in the 45 day/week group from an overtraining
response, even though the external resistance was low,
however, it is more likely this overtraining response is
more reflective of the frequency of training rather than the
days trained per week, since 4 out of 7 studies in the
4-5 day/week group trained twice per day.

Training duration

This investigation found that although the ES for muscular
hypertrophy remains fairly constant from <4 weeks of
training to 10 or more weeks of training, muscular strength
responds much differently. The ESindicate that muscular
strength does not significantly increase until the 10 week
time point (Fig. 1). This finding is interesting because
traditionally it has been thought that neural adaptations
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Fig. 1 The effect sizes (ES) for 1,50 LI-BFR
muscle strength and £
hypertrophy with low intensity 1.30
blood flow restriction (LI-BFR)
as it relates to duration of 1.10
training
0.90
é o —+— Hypertrophy
E Strength
£ 050
L o n
0.30 T e ——
0.10
0.10 <4 5.8 9_10
-0.30 Weeks of Exercise Training
Strength r=0.67; p<0.01
* Significantly different from < 4 weeks of exercise training (P < 0.05)
Fig. 2 Graphical Theoretical Reverse Pattern of Adaptationsin Traditional
representation of the theoretical 2 5 .
interaction between strength, vs. Low Intensity Blood Flow Restricted Exercise
hypertrophy, and neural
adaptations during both
traditional resistance training
(T-RT), and low intensity blood
flow restricted exercise (LI-
BFR) is shown. During T-RT
strength increases at first Strenath LI-BFR
primarily by changes in @ g
muscular hypertrophy followed y
latter by neural adaptations. For uen Strength T-RT
o

LI-BFR the opposite pattern
may occur (adapted from Sale
1988)

increase strength during the first couple of weeks of exer-
cise and muscle hypertrophy occurs later on in the training
(>6 weeks). These data suggest that perhaps the traditional
training adaptation paradigm is reversed with LI-BFR
exercise. This may help to explain the findings of studies
which report that the strength gains from LI-BFR exercise
are a product of muscle hypertrophy and not neural adap-
tation (Fujita et al. 2008; Takarada et al. 2002, 2000;
Yasuda et al. 2011). All of those studies with the exception
of one (Takarada et al. 2000) trained <8 weeks. If the
findings from this analysis are accurate and representative,
then it is conceivable that neural adaptations for LI-BFR
exercise do not occur until much later in the training pro-
gram, and studies lasting <10 weeks would be unlikely to
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produce relative strength gains (maximal voluntary
strength per unit muscle cross sectional area). In further
support, correlational analyses found a significant rela-
tionship between the ES for strength and weeks of training,
with no significant correlation found for hypertrophy. This
possible reversal in the neural adaptation finding warrants
further investigation before these phenomena can be
definitively acknowledged. It is also possible that this
finding is spurious and exclusive only to the two long-term
(9-10 weeks) studies included in this analysis. While this
finding is far from conclusive; however, Fig. 2 graphically
depicts the possible theoretical interaction between
strength, hypertrophy, and neural adaptations during both
traditional resistance training, and LI-BFR exercise.
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Training modality and intensity/volume

The results indicate that isotonic exercise improved mus-
cular strength and hypertrophy to a greater degree than
walking. This difference is likely related to the amount of
work completed by the muscle as well as the accumulation
of metabolites. With resistance training, specific muscles
are easily isolated and the metabolic accumulation is much
larger than that observed with walking, which further
highlights the importance of metabolic accumulation for
ideal outcomes in strength and hypertrophy. An additional
mechanism responsible for adaptations caused by LI-BFR
may be acute cell swelling as this has been shown to
stimulate an anabolic response in hepatocytes (Haussinger
1996). Regardless of the mechanism, significant differ-
ences exist between isotonic resistance training and walk-
ing with LI-BFR. Therefore, individuals capable of
performing low intensity resistance training with blood
flow restriction will see larger increases in strength and
muscle hypertrophy compared to those walking with blood
flow restriction. Subsequent alterations in muscular
strength and muscle hypertrophy outcomes were also sig-
nificantly dependent upon exercise intensity. To illustrate,
resistance training with 15-30% MVC/IRM produced
greater strength and size gains compared to walking at
50-60 m/min. However, these results are likely to be an
artifact of the exercise modality, which the aforementioned
analysis demonstrated can impact the overall effect. Sim-
ilar results are present in relation to volume of exercise and
rest interval. For example, greater gains in strength and size
were found; however, the only two comparisons were made
between repetitions completed and minutes walked. In
addition, this analysis found that 30 s of rest between sets
produced much greater strength gains than 60 s; however,
every study using 60 s rest was a walking study. Thus, we
suggest that future investigators specifically analyze the
question of volume within a given exercise modality.

Cuff pressures

Throughout the literature, numerous cuff pressures are
used. Often, training studies begin at an overall low pres-
sure and progress to high pressures throughout the training
programs. For this analysis, two of our groups have over-
lap, but differed at where the initial training pressures
began (140 vs. 160 mmHg) and where the final training
pressures ended (160-240 mmHg). This overlap may have
led to the non-significant finding, however it may also
indicate that the absolute pressure needed for muscular
adaptation is much less than commonly thought, especially
when using a wider cuff to induce blood flow restriction
(Crenshaw et al. 1988). In support of this, evidence sug-
gests that higher restrictive cuff pressures (200 mmHg) are

no more effective at increasing intramuscular metabolites
than moderate pressures (~ 150 mmHg or 130% systolic
BP) when using a wide (18.5 cm) cuff (Suga et al. 2010).
The impact of cuff width was not able to be made from the
current analysis, since most studies in this meta-analysis
used a narrow cuff (5 cm), therefore the overall impact of
cuff width on training adaptation remains unknown. Cur-
rent research on acute LI-BFR exercise (Wernbom et al.
2008) and the data from this analysis do not suggest that
higher pressures would be more effective than lower
pressures for inducing training adaptations. However, no
study to date has examined the impact of progressively
increasing or maintaining restrictive cuff pressure during
LI-BFR training so it is not clear if progressive increases in
restrictive cuff pressure are necessary to produce muscular
strength or hypertrophy.

Limitations for endurance-based outcomes

The primary focus of our meta-analysis was the effects of
blood flow restriction training on hypertrophy and strength
training. However, it should be emphasized that our results
do not necessarily apply to other outcomes such as
endurance performance. For example, we found that
greater training frequencies may not be ideal for hyper-
trophy and strength gains; however, they may be beneficial
for endurance outcomes. This was illustrated by Kacin and
Strazar (2011) who found that high frequency (4x week)
LI-BFR resulted in small gains in hypertrophy, and no
significant increases in strength. However, they found that
the blood flow restricted group increased endurance per-
formance by 63% as compared to 36% in the control
condition. Moreover, while our results strongly indicate
that a resistance exercise mode is ideal for strength and
hypertrophy, a number of researchers have demonstrated
that cycling under ischemic conditions may be a highly
effective mode for increasing muscular endurance (Kaijser
et al. 1990; Nygren et al. 2000; Sundberg et al. 1993). For
the reason that endurance adaptations are an important, yet
understudied, component of LI-BFR exercise training we
suggest future research attempt to disseminate exactly what
the ideal prescription is for those particular outcomes.

Conclusions

This meta-analysis provides insight into the overall impact
of different training variables on muscular strength and
hypertrophy to LI-BFR training. Although only 11 studies
met the inclusion criteria for this meta-analysis, general
recommendations can be made from the results and pat-
terns observed from this study. This analysis provides
evidence and recommendations for future studies to use in
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order to maximize the muscular strength and hypertrophy
response to this novel mode of training. It appears that
blood flow restriction combined with low intensity
resistance exercise produces a much greater response
than blood flow restricted walking. Furthermore, LI-BFR
training 2-3 days per week appears to maximize the
training adaptation and there is some evidence that the
neural adaptation to LI-BFR training does not occur at
the beginning of a training program as it does with
traditional resistance training. It appears that initial
increases in strength may be due solely to muscle
hypertrophy, while the neural impact on strength gains
may occur much later with LI-BFR training. Although
this finding may be true with LI-BFR training, longer-
term studies are needed before a definitive conclusion
can be made.
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